Degradation Techniques of Hemicellulose Fraction from Biomass Feedstock for Optimum Xylose Production: A Review

Authors

  • Budi Mandra Harahap Universitas Padjadjaran

DOI:

https://doi.org/10.21776/ub.jkptb.2020.008.02.01

Keywords:

Biomass Feedstock, Degradation Techniques, Hemicellulose, Xylose

Abstract

The utilization of xylose, one of the C-5 sugars released from hemicellulose deconstruction of biomass feedstock, is intensively studied, in particular for producing valuable fermentation products. More xylose in the initial fermentation broth is highly expected to induce more final products formed. The techniques for lignocellulose fractionation to obtain the expected xylose amount are widely developed. Nevertheless, these are slightly different from the methods for glucose production. The production of glucose is initiated by delignification to facilitate enzyme accessibility in degrading cellulose to glucose. The delignification process, however, requires harsh conditions causing further decomposition of xylose corresponded to the formation of inhibitors detected in the spent liquor of pretreatment. Hence, xylose recovery needs particular treatments and the corresponding condition. Several strategies offered attributed to xylose production involved in conventional treatment using dilute acid and other promising methods such as an autohydrolysis, solid acids, steam explosion, inorganic salt, and ionic liquid. Post-treatments by enzymatic or acid hydrolysis of xylooligosaccharides dissolved in the liquid fraction are also considered to enhance xylose recovery. This review provides such techniques and the challenges frequently arising during xylose yield optimization performed. Each method has specific benefits and drawbacks that are also addressed in this paper.

References

A. Arevalo-Gallegos, Z. Ahmad, M. Asgher, R. Parra-Saldivar, and H. M. N. Iqbal, “Lignocellulose: A sustainable material to produce value-added products with a zero waste approach—A review,†Int. J. Biol. Macromol., vol. 99, pp. 308–318, 2017.

M. S. Singhvi, S. Chaudhari, and D. V Gokhale, “Lignocellulose processing : A current challenge,†RSC Adv., vol. 4, pp. 8271–8277, 2014.

A. Gupta and J. Prakash, “Sustainable bio-ethanol production from agro-residues : A review,†Renew. Sustain. Energy Rev., vol. 41, pp. 550–567, 2015.

M. Kresnowati, E. Mardawati, and T. Setiadi, “Production of Xylitol from Oil Palm Empty Friuts Bunch: A Case Study on Bioefinery Concept,†Mod. Appl. Sci., vol. 9, no. 7, pp. 206–213, 2015.

B. M. Harahap, E. Mardawati, and D. Nurliasari, “A comprehensive review : Integrated microbial xylitol, bioethanol, and cellulase production from oil palm empty fruit bunches,†J. Ind. Pertan., vol. 2, no. 1, pp. 142–157, 2020.

G. Guerriero, J. F. Hausman, J. Strauss, H. Ertan, and K. S. Siddiqui, “Lignocellulosic biomass: Biosynthesis, degradation, and industrial utilization,†Eng. Life Sci., vol. 16, no. 1, pp. 1–16, 2016.

B. C. Saha, “Hemicellulose bioconversion,†J. Ind. Microbiol. Biotechnol., vol. 30, pp. 279–291, 2003.

F. M. Girio, R. F. Fonseca, F. Carvalheiro, L. C. Duarte, S. Marques, and R. Bogel-Lukasik, “Hemicelluloses for fuel ethanol : A review,†Bioresour. Technol., vol. 101, no. 13, pp. 4775–4800, 2010.

N. Sarkar, S. K. Ghosh, S. Bannerjee, and K. Aikat, “Bioethanol production from agricultural wastes : An overview,†Renew. Energy, vol. 37, no. 1, pp. 19–27, 2012.

Y. H. Jung and K. H. Kim, Pretreatment of Biomass. Elsevier, 2015.

Y. Sun and J. Cheng, “Hydrolysis of lignocellulosic materials for ethanol production: a review,†Bioresour. Technol., vol. 83, no. 1, pp. 1–11, May 2002.

L. Canilha et al., “Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation,†J. Biomed. Biotechnol., vol. 2012, 2012.

E. C. Van Der Pol, R. R. Bakker, P. Baets, and G. Eggink, “By-products resulting from lignocellulose pretreatment and their inhibitory effect on fermentations for ( bio ) chemicals and fuels,†Appl. Microbiol. Biotechnol., vol. 98, pp. 9579–9593, 2014.

M. Shafiei, R. Kumar, and K. Karimi, “Pretreatment of Lignocellulosic Biomass,†in Lignocellulose-Based Bioproducts, K. Karimi, Ed. Springer International Publishing, 2015, pp. 85–154.

A. Samala, R. Srinivasan, M. P. Yadav, T.-J. Kim, and L. Prewitt, “Xylo-oligosaccharides production by autohydrolysis of corn fiber separated from ddgs,†bioresources.com, vol. 7, no. 3, pp. 3038–3050, 2012.

E. Palmqvist and B. Hahn-Hägerdal, “Fermentation of lignocellulosic hydrolysates . II : Inhibitors and mechanisms of inhibition,†Bioresour. Technol., vol. 74, pp. 25–33, 2000.

O. Akpinar, O. Levent, and Ş. Bostanci, “The Optimization of Dilute Acid Hydrolysis of Cotton Stalk in Xylose Production,†Appl. Biochem. Biotechnol., vol. 163, pp. 313–325, 2011.

Y. Chen, B. Dong, W. Qin, and D. Xiao, “Xylose and cellulose fractionation from corncob with three different strategies and separate fermentation of them to bioethanol,†Bioresour. Technol., vol. 101, no. 18, pp. 6994–6999, 2010.

E. Hong, J. Kim, S. Rhie, S. Ha, J. Kim, and Y. Ryu, “Optimization of Dilute Sulfuric Acid Pretreatment of Corn Stover for Enhanced Xylose Recovery and Xylitol Production,†Biotechnol. Bioprocess Eng., vol. 21, pp. 612–619, 2016.

S. Sabiha-hanim, M. Azemi, M. Noor, and A. Rosma, “Effect of autohydrolysis and enzymatic treatment on oil palm (Elaeis guineensis Jacq.) frond fibres for xylose and xylooligosaccharides production,†Bioresour. Technol., vol. 102, no. 2, pp. 1234–1239, 2011.

B. M. Harahap and M. T. A. P. Kresnowati, “Moderate pretreatment of oil palm empty fruit bunches for optimal production of xylitol via enzymatic hydrolysis and fermentation,†Biomass Convers. Biorefinery, vol. 8, no. 2, pp. 255–263, 2018.

X. Fan, G. Cheng, H. Zhang, M. Li, S. Wang, and Q. Yuan, “Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob,†Carbohydr. Polym., vol. 114, pp. 21–26, 2014.

S. Siti Sabrina, A. R. Roshanida, and N. Norzita, “Pretreatment of oil palm fronds for improving hemicelluloses content for higher recovery of xylose,†J. Teknol. (Sciences Eng., vol. 62, no. 2, pp. 39–42, 2013.

K. Eop, D. Park, and G. Jeong, “Effects of inorganic salts on pretreatment of Miscanthus straw,†Bioresour. Technol., vol. 132, pp. 160–165, 2013.

V. P. Soudham, J. Gräsvik, B. Alriksson, J. P. Mikkola, and L. J. Jönsson, “Enzymatic hydrolysis of Norway spruce and sugarcane bagasse after treatment with 1-allyl-3-methylimidazolium formate,†J. Chem. Technol. Biotechnol., vol. 88, no. 12, pp. 2209–2215, 2013.

E. Palmqvist and B. Hahn-Hagerdal, “Fermentation of lignocellulosic hydrolysates. I : inhibition and detoxification,†Bioresour. Techonolgy, vol. 74, pp. 17–24, 2000.

F. Peng, J. L. Ren, F. Xu, and R. Sun, “Chemicals from Hemicelluloses : A Review,†in Sustainable Production of Fuels, Chemicals, and Fibers from Forest Biomass, 2011, pp. 219–259.

F. M. Girio, F. Carvalheiro, L. C. Duarte, and R. Bogel-Åukasik, “D-Xylitol,†in D-xylitol, S. S. da Silva and A. K. Chandel, Eds. Springer Berlin Heidelberg, 2012, pp. 3–28.

L. Venkateswar Rao, J. K. Goli, J. Gentela, and S. Koti, “Bioconversion of lignocellulosic biomass to xylitol: An overview,†Bioresour. Technol., vol. 213, pp. 299–310, 2015.

N. Ida et al., “Modification of Oil Palm Mesocarp Fiber Characteristics Using Superheated Steam Treatment,†no. May, pp. 9132–9146, 2013.

V. Z. Ong, T. Z. Wu, C. B. L. T. Lee, N. W. R. Cheong, R. Cheong, and K. P. Y. Shak, “Ultrasonics - Sonochemistry Sequential ultrasonication and deep eutectic solvent pretreatment to remove lignin and recover xylose from oil palm fronds,†Ultrason. - Sonochemistry, vol. 58, no. January, p. 104598, 2019.

B. M. Harahap, A. I. Dewantoro, M. R. Maulid, E. Mardawati, and V. P. Yarlina, “Autoclave-assisted weak acid pretreatment of oil palm empty fruits bunches for fermentable sugar production Autoclave-assisted weak acid pretreatment of oil palm empty fruits bunches for fermentable sugar production,†IOP Conf. Ser. Earth Environ. Sci., vol. 443, p. 012080, 2020.

N. Zhao and B. Li, “The effect of sodium chloride on the pyrolysis of rice husk,†Appl. Energy, vol. 178, pp. 346–352, 2016.

J. Kim et al., “Two-stage pretreatment of rice straw using aqueous ammonia and dilute acid,†Bioresour. Technol., vol. 102, no. 19, pp. 8992–8999, 2011.

I. Egüés, C. Sanchez, I. Mondragon, and J. Labidi, “Effect of alkaline and autohydrolysis processes on the purity of obtained hemicelluloses from corn stalks,†vol. 103, pp. 239–248, 2012.

M. Michelin, E. Ximenes, M. De Lourdes, T. De Moraes, and M. R. Ladisch, “Effect of phenolic compounds from pretreated sugarcane bagasse on cellulolytic and hemicellulolytic activities,†Bioresour. Technol., vol. 199, pp. 275–278, 2016.

A. F. Hernández-Pérez, P. V. de Arruda, and M. D. G. D. A. Felipe, “Sugarcane straw as a feedstock for xylitol production by Candida guilliermondii FTI 20037,†Brazilian J. Microbiol., vol. 47, no. 2, pp. 489–496, 2016.

J. C. Parajo, G. Garrote, and H. Domı, “Mild autohydrolysis : an environmentally friendly technology for xylooligosaccharide production from wood,†vol. 1109, no. July, pp. 1101–1109, 1999.

G. Garrote, H. Dom, and J. C. Paraj, “Autohydrolysis of corncob : study of non-isothermal operation for xylooligosaccharide production,†vol. 52, pp. 211–218, 2002.

E. Van Der Pol, R. Bakker, A. Van Zeeland, D. S. Garcia, A. Punt, and G. Eggink, “Analysis of by-product formation and sugar monomerization in sugarcane bagasse pretreated at pilot plant scale : Differences between autohydrolysis , alkaline and acid pretreatment,†Bioresour. Technol., vol. 181, pp. 114–123, 2015.

X. Zhuang et al., “Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products,†Bioresour. Technol., vol. 199, pp. 68–75, 2016.

G. Garrote, J. C. Parajo, J. M. Cruz, and H. Dominguez, “Production of saccharides by autohydrolysis of lignocellulosic materials,†vol. 15, pp. 115–120, 2004.

J. Park, Z. Wang, W.-H. Lee, H. Jameel, Y.-S. Jin, and S. Park, “Effect of the Two-Stage Autohydrolysis of Hardwood on the Enzymatic Saccharification and Subsequent Fermentation with an Efficient Xylose-Utilizing Saccharomyces cerevisiae,†BioResources, vol. 11, no. 4, pp. 9584–9595, 2016.

X. Chen, M. Lawoko, and A. van Heiningen, “Kinetics and mechanism of autohydrolysis of hardwoods,†Bioresour. Technol., vol. 101, no. 20, pp. 7812–7819, 2010.

B. S. Santucci, P. Maziero, S. C. Rabelo, A. A. S. Curvelo, and M. T. B. Pimenta, “Autohydrolysis of Hemicelluloses from Sugarcane Bagasse During Hydrothermal Pretreatment: a Kinetic Assessment,†Bioenergy Res., vol. 8, no. 4, pp. 1778–1787, 2015.

F. Carvalheiro, M. P. Esteves, J. C. Parajó, H. Pereira, and F. M. Gírio, “Production of oligosaccharides by autohydrolysis of brewery’s spent grain,†Bioresour. Techonolgy, vol. 91, pp. 93–100, 2004.

G. Garrote, E. Falqué, H. Domínguez, and J. C. Parajó, “Autohydrolysis of agricultural residues : Study of reaction byproducts,†vol. 98, pp. 1951–1957, 2007.

D. J. Rose and G. E. Inglett, “Production of feruloylated arabinoxylo-oligosaccharides from maize (Zea mays) bran by microwave-assisted autohydrolysis,†Food Chem., vol. 119, no. 4, pp. 1613–1618, 2010.

P. Ligero, J. C. van der Kolk, A. de Vega, and J. E. G. van Dam, “Production of xylooligosaccharides from miscanthus x giganteus by autohydrolysis,†bioresources.com, vol. 6, no. 4, pp. 4417–4429, 2011.

M. J. Feria, F. López, J. C. García, A. Pérez, M. A. M. Zamudio, and A. Alfaro, “Valorization of Leucaena leucocephala for energy and chemicals from autohydrolysis,†Biomass and Bioenergy, vol. 35, no. 5, pp. 2224–2233, 2011.

A. Romaní, G. Garrote, F. López, and J. C. Parajó, “Eucalyptus globulus wood fractionation by autohydrolysis and organosolv delignification,†Bioresour. Technol., vol. 102, no. 10, pp. 5896–5904, 2011.

D. Amendola, D. M. De Faveri, I. Egües, L. Serrano, J. Labidi, and G. Spigno, “Autohydrolysis and organosolv process for recovery of hemicelluloses, phenolic compounds and lignin from grape stalks,†Bioresour. Technol., vol. 107, pp. 267–274, 2012.

J. S. Gütsch, T. Nousiainen, and H. Sixta, “Comparative evaluation of autohydrolysis and acid-catalyzed hydrolysis of Eucalyptus globulus wood,†Bioresour. Techonolgy, vol. 109, pp. 77–85, 2012.

M. Michelin, M. De Lourdes, T. M. P. Denise, D. P. S. He, and F. T. Jose, “Production of xylanase and b -xylosidase from autohydrolysis liquor of corncob using two fungal strains,†pp. 1185–1192, 2012.

A. Romaní, H. A. Ruiz, and F. B. Pereira, “Effect of hemicellulose liquid phase on the enzymatic hydrolysis of autohydrolyzed Eucalyptus globulus wood,†Biomass Convers. Biorefinery, vol. 4, pp. 77–86, 2013.

D. Meilany, M. T. A. P. Kresnowati, T. Setiadi, and R. Boopathy, “Optimization of xylose recovery in oil palm empty fruit bunches for xylitol production,†Appl. Sci., vol. 10, no. 4, 2020.

G. S. Wang, J.-W. Lee, J. Y. Zhu, and T. W. Jeffries, “Dilute acid pretreatment of corncob for efficient sugar production,†Appl. Biochem. Biotechnol., vol. 163, no. 5, pp. 658–668, 2011.

B. Cai, J. Ge, H. Ling, K. Cheng, and W. Ping, “Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production,†Biomass and Bioenergy, vol. 36, pp. 250–257, 2011.

J. Shen and C. E. Wyman, “A novel mechanism and kinetic model to explain enhanced xylose yields from dilute sulfuric acid compared to hydrothermal pretreatment of corn stover,†Bioresour. Technol., vol. 102, no. 19, pp. 9111–9120, 2011.

A. Feher, C. Feher, M. Rozbach, and Z. Barta, “Combined approaches to Xylose production from corn Stover by dilute acid hydrolysis,†Chem. Biochem. Eng. Q., vol. 31, no. 1, pp. 77–87, 2017.

D. Zhang, Y. Ling, Z. Li, and J. Chuan, “Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose,†Chem. Eng. J., vol. 181–182, pp. 636–642, 2012.

H. T. Tan, G. A. Dykes, and T. Y. Wu, “Enhanced Xylose Recovery from Oil Palm Empty Fruit Bunch by Efficient Acid Hydrolysis,†Appl. Biochem. Biotechnol., vol. 170, pp. 1602–1613, 2013.

I. C. Roberto, S. I. Mussatto, and R. C. L. B. Rodrigues, “Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor,†Ind. Crops Prod., vol. 17, no. 3, pp. 171–176, 2003.

L. Q. Jin, N. Zhao, Z. Q. Liu, C. J. Liao, X. Y. Zheng, and Y. G. Zheng, “Enhanced production of xylose from corncob hydrolysis with oxalic acid as catalyst,†Bioprocess Biosyst. Eng., vol. 41, no. 1, pp. 57–64, 2018.

L. Qin, Z. H. Liu, B. Z. Li, B. E. Dale, and Y. J. Yuan, “Mass balance and transformation of corn stover by pretreatment with different dilute organic acids,†Bioresour. Technol., vol. 112, pp. 319–326, 2012.

Y. Yan et al., “Microwave-Assisted Oxalic Acid Pretreatment for the Xylose and Arabinose from Bagasse,†Molecules, vol. 23, no. 862, 2018.

J. Akhtar, A. Idris, C. L. Teo, L. W. Lai, and N. Hassan, “Comparison of delignification of Oil Palm Empty Fruit Bunch ( EFB ) by Microwave assisted alkali / acid pretreatment and Conventional Pretreatment Method,†vol. 1, no. 2, pp. 155–157, 2014.

J. Liu, R. Takada, S. Karita, T. Watanabe, Y. Honda, and T. Watanabe, “Microwave-assisted pretreatment of recalcitrant softwood in aqueous glycerol,†Bioresour. Technol., vol. 101, no. 23, pp. 9355–9360, 2010.

W. Fatriasari, R. Raniya, M. Oktaviani, and E. Hermiati, “The Improvement of Sugar and Bioethanol Production of Oil Palm Empty Fruit Bunches ( Elaeis guineensis Jacq) through Microwave-Assisted Maleic Acid Pretreatment,†bioresources.com, vol. 13, pp. 4378–4403, 2018.

P. Boonmanumsin, S. Treeboobpha, K. Jeamjumnunja, A. Luengnaruemitchai, T. Chaisuwan, and S. Wongkasemjit, “Bioresource Technology Release of monomeric sugars from Miscanthus sinensis by microwave-assisted ammonia and phosphoric acid treatments,†Bioresour. Technol., vol. 103, no. 1, pp. 425–431, 2012.

W. Chen, Y. Tu, and H. Sheen, “Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating,†Appl. Energy, vol. 88, no. 8, pp. 2726–2734, 2011.

X. Lu, B. Xi, Y. Zhang, and I. Angelidaki, “Microwave pretreatment of rape straw for bioethanol production: Focus on energy efficiency,†Bioresour. Technol., vol. 102, no. 17, pp. 7937–7940, 2011.

G. Gong, D. Liu, and Y. Huang, “Microwave-assisted organic acid pretreatment for enzymatic hydrolysis of rice straw,†Biosyst. Eng., vol. 107, no. 2, pp. 67–73, 2010.

Y. B. Huang and Y. Fu, “Hydrolysis of cellulose to glucose by solid acid catalysts,†Green Chem., vol. 15, no. 5, pp. 1095–1111, 2013.

W. Qi et al., “Carbon-based solid acid pretreatment in corncob saccharification : specific xylose production and efficient enzymatic hydrolysis,†ACS Sustain. Chem. Eng., vol. 6, no. 3, pp. 3640–3648, 2018.

Q. Xu et al., “Enhanced Enzymatic Hydrolysis of Corncob by Synthesized Enzyme- Mimetic Magnetic Solid Acid Pretreatment in an Aqueous Phase,†ACS Omega, vol. 4, no. 18, pp. 17864–17873, 2019.

X. Qi, L. Yan, F. Shen, and M. Qiu, “Mechanochemical-assisted hydrolysis of pretreated rice straw into glucose and xylose in water by weakly acidic solid catalyst,†Bioresour. Technol., vol. 273, pp. 687–691, 2018.

H. Ji, Y. Song, X. Zhang, and T. Tan, “Using a combined hydrolysis factor to balance enzymatic saccharification and the structural characteristics of lignin during pretreatment of Hybrid poplar with a fully recyclable solid acid,†Bioresour. Technol., 2017.

E. V. Canettieri, G. J. de M. Rocha, J. A. de Carvalho, and J. B. de Almeida e Silva, “Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology,†Bioresour. Technol., vol. 98, no. 2, pp. 422–428, 2007.

A. A. Shatalov and H. Pereira, “Xylose production from giant reed ( Arundo donax L .): Modeling and optimization of dilute acid hydrolysis,†Carbohydr. Polym., vol. 87, no. 1, pp. 210–217, 2012.

D. Y. Kim, B. H. Um, and K. K. Oh, “Acetic acid-assisted hydrothermal fractionation of empty fruit bunches for high hemicellulosic sugar recovery with low byproducts,†Appl. Biochem. Biotechnol., vol. 176, pp. 1445–1458, 2015.

A. Avci, B. C. Saha, B. S. Dien, G. J. Kennedy, and M. A. Cotta, “Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production,†Bioresour. Technol., vol. 130, pp. 603–612, 2013.

A. M. J. Kootstra, H. H. Beeftink, E. L. Scott, and J. P. M. Sanders, “Optimization of the dilute maleic acid pretreatment of wheat straw,†Biotechnol. Biofuels, vol. 2, no. 1, pp. 1–14, 2009.

P. Wu, J. Li, T. He, and C. Hu, “The direct conversion of hemicelluloses to selectively produce xylose from corn stover catalysed by maleic acid,†BioResources, vol. 14, no. 1, pp. 816–841, 2019.

I. Kim, B. Lee, J. Y. Park, S. A. Choi, and J. I. Han, “Effect of nitric acid on pretreatment and fermentation for enhancing ethanol production of rice straw,†Carbohydr. Polym., vol. 99, pp. 563–567, 2014.

I. Kim, Y. H. Seo, G. Y. Kim, and J. I. Han, “Co-production of bioethanol and biodiesel from corn stover pretreated with nitric acid,†Fuel, vol. 143, pp. 285–289, 2015.

Q. Qing, M. Huang, Y. He, L. Wang, and Y. Zhang, “Dilute Oxalic Acid Pretreatment for High Total Sugar Recovery in Pretreatment and Subsequent Enzymatic Hydrolysis,†Appl. Biochem. Biotechnol., vol. 177, no. 7, pp. 1493–1507, 2015.

W. Li et al., “Bioresource Technology Short Communication A two-stage pretreatment process using dilute hydrochloric acid followed by Fenton oxidation to improve sugar recovery from corn stover,†Bioresour. Technol., vol. 219, pp. 753–756, 2016.

S. Zu et al., “Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime,†Bioresour. Technol., vol. 152, pp. 364–370, 2014.

N. Jacquet, G. Maniet, C. Vanderghem, F. Delvigne, and A. Richel, “Application of Steam Explosion as Pretreatment on Lignocellulosic Material: A Review,†Ind. Eng. Chem. Res., vol. 54, no. 10, pp. 2593–2598, 2015.

W. Wang, H. Ling, and H. Zhao, “Steam explosion pretreatment of corn straw on xylose recovery and xylitol production using hydrolysate without detoxification,†Process Biochem., vol. 50, no. 10, pp. 1623–1628, 2015.

S. Duangwang, T. Ruengpeerakul, B. Cheirsilp, and R. Yamsaengsung, “Pilot-scale steam explosion for xylose production from oil palm empty fruit bunches and the use of xylose for ethanol production,†Bioresour. Technol., vol. 203, pp. 252–258, 2016.

Z. Liu and H. Chen, “Bioresource Technology Xylose production from corn stover biomass by steam explosion combined with enzymatic digestibility,†Bioresour. Technol., vol. 193, pp. 345–356, 2015.

K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, and H. W. Blanch, “Ionic liquid pretreatment of cellulosic biomass: Enzymatic hydrolysis and ionic liquid recycle,†Biotechnol. Bioeng., vol. 108, no. 3, pp. 511–520, 2011.

A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,†Green Chem., vol. 15, no. 3, pp. 550–583, 2013.

F. Xu, Y. Shi, and D. Wang, “Bioresource Technology Enhanced production of glucose and xylose with partial dissolution of corn stover in ionic liquid , 1-Ethyl-3-methylimidazolium acetate,†Bioresour. Technol., vol. 114, pp. 720–724, 2012.

L. Vanoye, M. Fanselow, J. D. Holbrey, M. P. Atkins, and K. R. Seddon, “Kinetic model for the hydrolysis of lignocellulosic biomass in the ionic liquid, 1-ethyl-3-methyl-imidazolium chloride,†Green Chem., vol. 11, no. 3, pp. 390–39, 2009.

S. Bahrani, S. Raeissi, and M. Sarshar, “Experimental investigation of ionic liquid pretreatment of sugarcane bagasse with 1,3-dimethylimadazolium dimethyl phosphate,†Bioresour. Technol., vol. 185, pp. 411–415, 2015.

Q. Li et al., “Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment,†Bioresour. Technol., vol. 100, no. 14, pp. 3570–3575, 2009.

A. V. Carvalho, A. M. Da Costa Lopes, and R. Bogel-ÅUkasik, “Relevance of the acidic 1-butyl-3-methylimidazolium hydrogen sulphate ionic liquid in the selective catalysis of the biomass hemicellulose fraction,†RSC Adv., vol. 5, no. 58, pp. 47153–47164, 2015.

Y. Loow et al., “Improvement of xylose recovery from the stalks of oil palm fronds using inorganic salt and oxidative agent,†Energy Convers. Manag., vol. 138, pp. 248–260, 2017.

C. Liu and C. E. Wyman, “The enhancement of xylose monomer and xylotriose degradation by inorganic salts in aqueous solutions at 180 ° C,†vol. 341, pp. 2550–2556, 2006.

L. Liu, J. Sun, C. Cai, S. Wang, H. Pei, and J. Zhang, “Corn stover pretreatment by inorganic salts and its effects on hemicellulose and cellulose degradation,†Bioresour. Technol., vol. 100, no. 23, pp. 5865–5871, 2009.

Z. Jiang et al., “Sodium Chloride-Assisted Depolymerisation of Xylo-oligomers to Xylose Sodium Chloride-Assisted Depolymerisation of Xylo-oligomers to Xylose,†ACS Sustain. Chem. Eng., vol. 6, no. 3, pp. 4098–4104, 2018.

Downloads

Published

2020-08-13

Issue

Section

Bahasa Indonesia Articles